Psiquiatría Computacional y Modelos Integrales de Comportamiento (PRACTICO-CM)
CAM. Consejería de Educación e Investigación; 2019-2021

Human behavior is understood in many different ways from different fields and sciences. A first notion of behavior has to do with the physical actions carried out by a person in a certain context, a framework within which we would include mobility and other physical activity. On a second level, people, as belonging to an ultra-social species like ours, interact with each other in a social context. Finally, for a sychologist or psychiatrist, behavior, and especially its alterations, are linked to manifestations of mental disorders, which are usually studied with reference to behavioral patterns considered “normal” in a certain sense. The project is based on the hypothesis that these three visions of human behavior are the projection onto different domains of the same entity, and therefore there is a connection between them that allows explaining and predicting to a certain extent what is observed in one domain from the others. Our goal is to test this hypothesis and, above all, to advance its application by means of a multidisciplinary approach and team.

Machine learning and massive computation for personalised medicine and quantitative climate analysis (CLARA)
Retos Investigación 2018. Ministerio de Ciencia, Innovación y Universidades; 2019-2021

In this project we aim at devising classes of dynamical probabilistic models, with allied computational inference methods, which can be used to solve real-world problems in personalised medicine and quantitative climate prediction. While these two fields may look far apart, the key issues to be addressed in terms of model learning and computational inference are of the same kind. We advocate a common methodological approach to problems in both areas and expect a considerable degree of cross fertilization, with ideas and techniques that appear in one field and then can be successfully exploited in the other.

Machine Learning Frontiers in Precision Medicine (MLFPM2018)
European Commission Research Executive Agency; 2019-2022

The goal is to exploit the insights for Precision Medicine, which hopes to offer personalized preventive care and therapy selection for each patient. A technology with transformational potential in analysing this health data is Machine Learning. Machine Learning strives to discover new knowledge in form of statistical dependencies in large datasets. Machine Learning is key to making the vision of Precision Medicine a reality. To meet this challenge, Europe urgently needs a new generation of scientists with knowledge in both machine learning and in health data analysis, who are extremely rare at a global scale. Our ETN’s goal is to close this gap, by bringing together leading European research institutes in Machine Learning and Statistical Genetics, both from the private and public sector, to train 15 early stage researchers. These scientists will help to shape the future of this important topic and increase Europe’s competitiveness in this domain.

Creación de un algoritmo que caracterice el comportamiento humano mediante agregación de datos (Deep-Darwin)
Ayudas Fundación BBVA a Equipos de Investigación Científica 2018; 2019-2021

The objective of this project is the creation of an algorithm that characterizes the behavior of people through the aggregation of data on a large scale to know their mental state and to be able to help patients who are in psychiatric treatment in a more efficient way. To achieve this, they will collect data from psychiatric patients – who have previously given their consent and guaranteeing their privacy – in collaboration with the Fundación Jiménez Díaz University Hospital. The impact that this investigation can have is to allow an evaluation of a patient’s condition automatically and passively, meaning that the patient does not have to do anything. The psychiatrist can know how the behavior of this person outside the medical consultation and, for example, to be aware of their reaction to a medical therapy to see if it works or there is a change in pattern and from there take the decision you consider timely.